Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.541
Filtrar
1.
Methods Cell Biol ; 182: 187-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359976

RESUMO

Replication stress risks genomic integrity. Depending on the level, replication stress can lead to slower progression through S phase and entry into G2 phase with DNA damage. In G2 phase, cells either recover and eventually enter mitosis or permanently withdraw from the cell cycle. Here we describe a method to detect cell cycle distribution, replication stress and cell cycle exit from G2 phase using fluorescence microscopy. We provide a script to automate the analysis using ImageJ. The focus has been to make a script and setup that is accessible to people without extensive computer knowledge.


Assuntos
Fase G2 , Mitose , Humanos , Ciclo Celular/genética , Dano ao DNA , Microscopia de Fluorescência , Replicação do DNA
2.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203781

RESUMO

Cytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using Schizosaccharomyces pombe as a model system. We find that converting His359 of CTPS into Ala359 leads to cytoophidium disassembly. By reducing the level of CTPS protein or specific mutation, the loss of cytoophidia prolongs the G2 phase and expands cell size. In addition, the loss-filament mutant of CTPS leads to a decrease in the expression of genes related to G2/M transition and cell growth, including histone chaperone slm9. The overexpression of slm9 alleviates the G2 phase elongation and cell size enlargement induced by CTPS loss-filament mutants. Overall, our results connect cytoophidia with cell cycle and cell size control in Schizosaccharomyces pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Fase G2
3.
Biochem Pharmacol ; 219: 115960, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049008

RESUMO

Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.


Assuntos
Fase G2 , Neoplasias da Próstata , Quinonas , /antagonistas & inibidores , Quinonas/química , Quinonas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fase G2/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Animais , Camundongos , Masculino , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Estrutura Molecular
4.
Toxicology ; 495: 153609, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541566

RESUMO

Two Ga(III) complexes (C1) and (C2) were prepared by the one-pot reaction of pyridine-2,6-dicarboxylic acid and aminopyridine derivatives with gallium(III) nitrate octahydrate. The compounds were characterized by single-crystal X-ray diffraction. The distorted octahedral geometry was confirmed by crystallographic data for both complexes. The study of the in vitro cytotoxicity of the compounds showed that the presence of different extra-nuclear cations can affect the cytotoxicity of the same anionic complexes. The most significant antiproliferative activity was observed for C1 (IC50 = 0.69 µM, MAE = 73.96%) and C2 (IC50 = 3.78 µM, MAE = 60.35%) (where MAE represents the maximal antiproliferative effect) against A431 cell line. The mechanistic study evidenced the same pathway for the death of A431 cells treated with the complexes, although the results for C2 were obtained at approximately five times the concentration of C1. According to the study, both complexes induced cell cycle arrest in G2/M phase in A431 cells by upregulating the levels of p21, p27, p-cdc25C, and p-cdc2 and downregulating the levels of cdc25C, cdc2, and cyclin B1. In addition, apoptosis via a caspase-dependent mitochondrial pathway was confirmed by a decrease in Bcl-2 family proteins and an increase in the expression of procaspase-9 and 3. Also, the complexes induced autophagic cell death by activating the RAGE /PI3KC3/Beclin 1 pathway in A431 cells. DATA AVAILABILITY: CCDC 874052 and 874055 contain the supplementary crystallographic data for C1 and C2, respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/services/structures?pid=ccdc:874052,874055&sid=CCDCManual, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.


Assuntos
Apoptose , Fase G2 , Divisão Celular , Caspases/metabolismo , Piridinas/toxicidade , Linhagem Celular Tumoral
5.
Mol Carcinog ; 62(12): 1947-1959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642304

RESUMO

Cyclin-dependent kinase subunit 2 (CKS2) has been reported to promote various malignancies. This study investigated the functional role of CKS2 in pancreatic cancer (PC). An analysis of abnormally expressed genes and their prognostic value for PC was performed by using the Gene Expression Profiling Interactive Analysis (GEPIA) database and performing immunohistochemical staining on 64 samples of tumor tissue. CCK-8 assays, EdU staining, colony formation assays, flow cytometry, and a xenograft tumor model were used to analyze the biological function of CKS2 in PC. Our results revealed that CKS2 was expressed at significantly higher levels in PC tissues than in adjacent normal tissues, and a high level of CKS2 expression was associated with a poor prognosis for patients with PC. Moreover, functional assays revealed that CKS2 knockdown suppressed cell proliferation, induced cell cycle S phase, G2/M phase arrest, and apoptosis in vitro, and also reduced tumor growth in vivo. In addition, CKS2 knockdown increased the levels of Bax, caspase-3, P53, P21, and GADD45α expression, but decreased Bcl-2, Cyclin B1, CDK1, Cyclin A, and Cdc25C expression. CKS2 overexpression produced the opposite effects of CKS2 knockdown. Furthermore, we found that ELK1 protein regulated transcription of the CKS2 gene. In conclusion, our findings suggest that CKS2 expression is regulated by ELK1, which could possibly serve as prognostic indicator and therapeutic target for PC.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pancreáticas , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Proliferação de Células/genética , Fase G2 , Apoptose/genética , Neoplasias Pancreáticas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/farmacologia
6.
Nature ; 619(7969): 363-370, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407814

RESUMO

In mammalian cells, the decision to proliferate is thought to be irreversibly made at the restriction point of the cell cycle1,2, when mitogen signalling engages a positive feedback loop between cyclin A2/cyclin-dependent kinase 2 (CDK2) and the retinoblastoma protein3-5. Contrary to this textbook model, here we show that the decision to proliferate is actually fully reversible. Instead, we find that all cycling cells will exit the cell cycle in the absence of mitogens unless they make it to mitosis and divide first. This temporal competition between two fates, mitosis and cell cycle exit, arises because cyclin A2/CDK2 activity depends upon CDK4/6 activity throughout the cell cycle, not just in G1 phase. Without mitogens, mitosis is only observed when the half-life of cyclin A2 protein is long enough to sustain CDK2 activity throughout G2/M. Thus, cells are dependent on mitogens and CDK4/6 activity to maintain CDK2 activity and retinoblastoma protein phosphorylation throughout interphase. Consequently, even a 2-h delay in a cell's progression towards mitosis can induce cell cycle exit if mitogen signalling is lost. Our results uncover the molecular mechanism underlying the restriction point phenomenon, reveal an unexpected role for CDK4/6 activity in S and G2 phases and explain the behaviour of all cells following loss of mitogen signalling.


Assuntos
Ciclo Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Fase G2 , Fase S , Animais , Ciclina A2/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/deficiência , Quinase 4 Dependente de Ciclina/metabolismo , Mitógenos/deficiência , Mitógenos/metabolismo , Mitose , Fosforilação , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Quinase 6 Dependente de Ciclina/deficiência , Quinase 6 Dependente de Ciclina/metabolismo , Fase G1
7.
Cell Rep ; 42(8): 112850, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37481721

RESUMO

The BRCA1-interacting protein Obg-like ATPase 1 (OLA1) functions in centriole duplication. In this study, we show the role of the mitotic kinase Aurora A in the reduction of centrosomal OLA1. Aurora A binds to and polyubiquitinates OLA1, targeting it for proteasomal degradation. NIMA-related kinase 2 (NEK2) phosphorylates the T124 residue of OLA1, increases binding of OLA1 to Aurora A and OLA1 polyubiquitination by Aurora A, and reduces centrosomal OLA1 in G2 phase. The kinase activity of Aurora A suppresses OLA1 polyubiquitination. The decrease in centrosomal OLA1 caused by Aurora A-mediated polyubiquitination promotes the recruitment of pericentriolar material proteins in G2 phase. The E3 ligase activity of Aurora A is critical for centrosome amplification induced by its overexpression. The results suggest a dual function of Aurora A as an E3 ubiquitin ligase and a kinase in the regulation of centrosomal OLA1, which is essential for proper centrosome maturation in G2 phase.


Assuntos
Aurora Quinase A , Centrossomo , Centrossomo/metabolismo , Fosforilação , Aurora Quinase A/metabolismo , Ciclo Celular , Fase G2
8.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260146

RESUMO

The cell cycle depends on a sequence of steps that are triggered and terminated via the synthesis and degradation of phase-specific transcripts and proteins. Although much is known about how stage-specific transcription is activated, less is understood about how inappropriate gene expression is suppressed. Here, we demonstrate that Groucho, the Drosophila orthologue of TLE1 and other related human transcriptional corepressors, regulates normal cell cycle progression in vivo. We show that, although Groucho is expressed throughout the cell cycle, its activity is selectively inactivated by phosphorylation, except in S phase when it negatively regulates E2F1. Constitutive Groucho activity, as well as its depletion and the consequent derepression of e2f1, cause cell cycle phenotypes. Our results suggest that Cdk1 contributes to phase-specific phosphorylation of Groucho in vivo. We propose that Groucho and its orthologues play a role in the metazoan cell cycle that may explain the links between TLE corepressors and several types of human cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Drosophila , Fator de Transcrição E2F1 , Proteínas Repressoras , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Drosophila/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fase G2 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fase S , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
9.
EMBO J ; 42(16): e113475, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37357575

RESUMO

Genetic information is stored in linear DNA molecules, which are highly folded inside cells. DNA replication along the folded template path yields two sister chromatids that initially occupy the same nuclear region in an intertwined arrangement. Dividing cells must disentangle and condense the sister chromatids into separate bodies such that a microtubule-based spindle can move them to opposite poles. While the spindle-mediated transport of sister chromatids has been studied in detail, the chromosome-intrinsic mechanics presegregating sister chromatids have remained elusive. Here, we show that human sister chromatids resolve extensively already during interphase, in a process dependent on the loop-extruding activity of cohesin, but not that of condensins. Increasing cohesin's looping capability increases sister DNA resolution in interphase nuclei to an extent normally seen only during mitosis, despite the presence of abundant arm cohesion. That cohesin can resolve sister chromatids so extensively in the absence of mitosis-specific activities indicates that DNA loop extrusion is a generic mechanism for segregating replicated genomes, shared across different Structural Maintenance of Chromosomes (SMC) protein complexes in all kingdoms of life.


Assuntos
Cromátides , Proteínas Cromossômicas não Histona , Humanos , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , DNA , Fase G2
10.
Cancer Sci ; 114(7): 2860-2870, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094904

RESUMO

High-risk neuroblastoma (HR-NB) is an aggressive childhood cancer that responds poorly to currently available therapies and is associated with only about a 50% 5-year survival rate. MYCN amplification is a critical driver of these aggressive tumors, but so far there have not been any approved treatments to effectively treat HR-NB by targeting MYCN or its downstream effectors. Thus, the identification of novel molecular targets and therapeutic strategies to treat children diagnosed with HR-NB represents an urgent unmet medical need. Here, we conducted a targeted siRNA screening and identified TATA box-binding protein-associated factor RNA polymerase I subunit D, TAF1D, as a critical regulator of the cell cycle and proliferation in HR-NB cells. Analysis of three independent primary NB cohorts determined that high TAF1D expression correlated with MYCN-amplified, high-risk disease and poor clinical outcomes. TAF1D knockdown more robustly inhibited cell proliferation in MYCN-amplified NB cells compared with MYCN-non-amplified NB cells, as well as suppressed colony formation and inhibited tumor growth in a xenograft mouse model of MYCN-amplified NB. RNA-seq analysis revealed that TAF1D knockdown downregulates the expression of genes associated with the G2/M transition, including the master cell-cycle regulator, cell-cycle-dependent kinase 1 (CDK1), resulting in cell-cycle arrest at G2/M. Our findings demonstrate that TAF1D is a key oncogenic regulator of MYCN-amplified HR-NB and suggest that therapeutic targeting of TAF1D may be a viable strategy to treat HR-NB patients by blocking cell-cycle progression and the proliferation of tumor cells.


Assuntos
Neuroblastoma , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Proliferação de Células/genética , Divisão Celular , Fase G2 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
11.
Sci Rep ; 13(1): 4889, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966193

RESUMO

The distribution of fluorescence signals measured with flow cytometry can be influenced by several factors, including qualitative and quantitative properties of the used fluorochromes, optical properties of the detection system, as well as the variability within the analyzed cell population itself. Most of the single cell samples prepared from in vitrocultures or clinical specimens contain a variable cell cycle component. Cell cycle, together with changes in the cell size, are two of the factors that alter the functional properties of analyzed cells and thus affect the interpretation of obtained results. Here, we describe the association between cell cycle status and cell size, and the variability in the distribution of fluorescence intensity as determined with flow cytometry, at population scale. We show that variability in the distribution of background and specific fluorescence signals is related to the cell cycle state of the selected population, with the 10% low fluorescence signal fraction enriched mainly in cells in their G0/G1 cell cycle phase, and the 10% high fraction containing cells mostly in the G2/M phase. Therefore we advise using caution and additional experimental validation when comparing populations defined by fractions at both ends of fluorescence signal distribution to avoid biases caused by the effect of cell cycle and cell size.


Assuntos
Fase G2 , Citometria de Fluxo/métodos , Divisão Celular , Ciclo Celular/fisiologia , Tamanho Celular
12.
Theranostics ; 13(3): 873-895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793872

RESUMO

Rationale: Overexpression of NAD(P)H:quinone oxidoreductase 1 (NQO1) is associated with tumor cell proliferation and growth in several human cancer types. However, the molecular mechanisms underlying the activity of NQO1 in cell cycle progression are currently unclear. Here, we report a novel function of NQO1 in modulation of the cell cycle regulator, cyclin-dependent kinase subunit-1 (CKS1), at the G2/M phase through effects on the stability of c­Fos. Methods: The roles of the NQO1/c-Fos/CKS1 signaling pathway in cell cycle progression were analyzed in cancer cells using synchronization of the cell cycle and flow cytometry. The mechanisms underlying NQO1/c-Fos/CKS1-mediated regulation of cell cycle progression in cancer cells were studied using siRNA approaches, overexpression systems, reporter assays, co-immunoprecipitation, pull-down assays, microarray analysis, and CDK1 kinase assays. In addition, publicly available data sets and immunohistochemistry were used to investigate the correlation between NQO1 expression levels and clinicopathological features in cancer patients. Results: Our results suggest that NQO1 directly interacts with the unstructured DNA-binding domain of c-Fos, which has been implicated in cancer proliferation, differentiation, and development as well as patient survival, and inhibits its proteasome-mediated degradation, thereby inducing CKS1 expression and regulation of cell cycle progression at the G2/M phase. Notably, a NQO1 deficiency in human cancer cell lines led to suppression of c-Fos-mediated CKS1 expression and cell cycle progression. Consistent with this, high NQO1 expression was correlated with increased CKS1 and poor prognosis in cancer patients. Conclusions: Collectively, our results support a novel regulatory role of NQO1 in the mechanism of cell cycle progression at the G2/M phase in cancer through effects on c­Fos/CKS1 signaling.


Assuntos
Ciclo Celular , NAD(P)H Desidrogenase (Quinona) , Neoplasias , Humanos , Divisão Celular , Linhagem Celular Tumoral , Fase G2 , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias/genética
13.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362215

RESUMO

Flow cytometry is the gold-standard laser-based technique to measure and analyze fluorescence levels of immunostaining and DNA content in individual cells. It provides a valuable tool to assess cells in the G0/G1, S, and G2/M phases, and those with polyploidy, which holds prognostic significance. Frozen section analysis is the standard intraoperative assessment for tumor margin evaluation and tumor resection. Here, we present flow cytometry as a promising technique for intraoperative tumor analysis in different pathologies, including brain tumors, leptomeningeal dissemination, breast cancer, head and neck cancer, pancreatic tumor, and hepatic cancer. Flow cytometry is a valuable tool that can provide substantial information on tumor analysis and, consequently, maximize cancer treatment and expedite patients' survival.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Citometria de Fluxo/métodos , Neoplasias Encefálicas/patologia , Divisão Celular , Fase G2 , Neoplasias da Mama/patologia , Ciclo Celular
14.
Cancer Sci ; 113(12): 4230-4243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36082621

RESUMO

Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.


Assuntos
Aurora Quinase A , Proteína BRCA1 , Centrossomo , Dano ao DNA , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Fase G2 , Fosforilação , Aurora Quinase A/metabolismo
15.
Methods Mol Biol ; 2579: 87-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045200

RESUMO

The typical cell cycle in eukaryotes is composed of four phases including the G1, S, G2, and M phases. G1, S, and G2 together are called interphase. Cell synchronization is a process that brings cultured cells at different stages of the cell cycle to the same phase, which allows the study of phase-specific cellular events. While interphase cells can be easily distinguished from mitotic cells by examining their chromosome morphology, it is much more difficult to separate and distinguish the interphases from each other. Here, we describe drug-derived protocols for synchronizing HeLa cells to various interphases of the cell cycle: G1 phase, S phase, and G2 phase. G1 phase synchronization is achieved through serum starvation, S phase synchronization is achieved through a double thymidine block, and G2 phase synchronization is achieved through the release of the double thymidine block followed by roscovitine treatment. Successful synchronization can be assessed using flow cytometry to examine the DNA content and Western blot to examine the expression of various cyclins.


Assuntos
Fase G2 , Mitose , Ciclo Celular/genética , Citometria de Fluxo/métodos , Células HeLa , Humanos , Interfase , Timidina/metabolismo
16.
Nat Commun ; 13(1): 3483, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732645

RESUMO

The regulation of cell growth has fundamental physiological, biotechnological and medical implications. However, methods that can continuously monitor individual cells at sufficient mass and time resolution hardly exist. Particularly, detecting the mass of individual microbial cells, which are much smaller than mammalian cells, remains challenging. Here, we modify a previously described cell balance ('picobalance') to monitor the proliferation of single cells of the budding yeast, Saccharomyces cerevisiae, under culture conditions in real time. Combined with optical microscopy to monitor the yeast morphology and cell cycle phase, the picobalance approaches a total mass resolution of 0.45 pg. Our results show that single budding yeast cells (S/G2/M phase) increase total mass in multiple linear segments sequentially, switching their growth rates. The growth rates weakly correlate with the cell mass of the growth segments, and the duration of each growth segment correlates negatively with cell mass. We envision that our technology will be useful for direct, accurate monitoring of the growth of single cells throughout their cycle.


Assuntos
Saccharomycetales , Animais , Ciclo Celular/fisiologia , Divisão Celular , Fase G2 , Mamíferos , Saccharomyces cerevisiae/metabolismo
17.
PLoS One ; 17(5): e0268060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551332

RESUMO

Breast cancer is the most common malignancy among women worldwide, accordingly, numerous chemotherapeutic drugs have been discovered thus far. However, the development and application of these drugs is severely constrained because of their unclear mechanism. To address this issue, our previous work has defined 3-acyl isoquinolin-1(2H)-one derivatives as potent anti-tumor agents, among which the compound 4f possessed relatively higher activity in vitro. In this study, we aim to further explore the anti-cancer effect and the underlying molecular mechanism of 4f in breast cancer cells. Therefore, CCK8 assay was used to detect cell viability and flow cytometry was used to analyze cell cycle and apoptosis. Meanwhile, related proteins that regulate cell cycle and apoptosis were detected. The results showed that 4f induced cell apoptosis and inhibited cell proliferation in breast cancer cells in a dose-depended manner without significant toxicity to human normal mammary epithelial cell. The cell cycle was arrested at G2 phase with the suppressed expression of the CDK1 protein. Additionally, 4f was confirmed to induce the cell apoptosis with the up-regulation of bax, down-regulation of bcl-2, activation of cleaved-caspase3/7/9 and cleaved-PARP, together with the inhibition of MEK/ERK and p38 MAPK pathway. Moreover, the GSDME-mediated pyroptosis was also induced by 4f in breast cancer cells. Together, these results demonstrated that 4f could serve as a new and promising candidate for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Piroptose , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fase G2 , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos
18.
STAR Protoc ; 3(1): 101227, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35284844

RESUMO

We present here a protocol to assay the centrosome separation events at late-G2 phase of the cell cycle by immunofluorescence microscopy. We describe the steps required for imaging and measurement of inter-centrosome distance. Here, we use GAS2L1 as an example, but the protocol can be used to test any protein for a role in centrosome separation and cohesion. The steps below are specific for hTERT RPE-1 cell lines, but other adherent cell lines (e.g., U2OS, MRC-5) are also amenable for this protocol. For complete details on the use and execution of this protocol, please refer to Au et al. (2017) and Au et al. (2020).


Assuntos
Centrossomo , Microscopia , Divisão Celular , Linhagem Celular , Centrossomo/metabolismo , Fase G2
19.
Dev Cell ; 57(5): 638-653.e5, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35245445

RESUMO

In human cells, ATR/Chk1 signaling couples S phase exit with the expression of mitotic inducers and prevents premature mitosis upon replication stress (RS). Nonetheless, under-replicated DNA can persist at mitosis, prompting chromosomal instability. To decipher how the DNA replication checkpoint (DRC) allows cells to enter mitosis over time upon RS, we developed a FRET-based Chk1 activity sensor. During unperturbed growth, a basal Chk1 activity level is sustained throughout S phase and relies on replication origin firing. Incremental RS triggers stepwise Chk1 over-activation that delays S-phase, suggesting a rheostat-like role for DRC coupled with the replication machinery. Upon RS, Chk1 is inactivated as DNA replication terminates but surprisingly is reactivated in a subset of G2 cells, which relies on Cdk1/2 and Plk1 and prevents mitotic entry. Cells can override active Chk1 signaling and reach mitosis onset, revealing checkpoint adaptation. Cell division following Chk1 reactivation in G2 results in a p53/p21-dependent G1 arrest, eliminating the daughter cells from proliferation.


Assuntos
Fase G2 , Mitose , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Replicação do DNA , Humanos , Fase S , Transdução de Sinais
20.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216098

RESUMO

The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Criança , Terapia Combinada/métodos , Terapia por Estimulação Elétrica/métodos , Estresse do Retículo Endoplasmático/genética , Fase G2/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mitocôndrias/genética , Fase de Repouso do Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...